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Director fluctuations in inhomogeneously ordered nematic liquid 
crystals: An extension of elastic molecular field 

by P. ZIHERL* and S. ZUMER 
Department of Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, 

Slovenia 

(Received 23 May 1996; accepted 19 August 1996) 

In order to describe the order director fluctuations in nematic liquid crystalline systems with 
inhomogeneous order parameter, the approach based on Frank elastic theory is extended by 
introducing spatially dependent rotational viscosity and elastic constants. Using the proposed 
model, eigenmodes of director fluctuations in the vicinity of a disclination line of strength 1 
are examined. Particular attention is paid to the behaviour of fluctuations in the vicinity of 
the structural transition in a cylindrical cavity 

1. Introduction 
During the past few years, the theoretical understand- 

ing of orientational fluctuations in nematic liquid crystals 
has been broadened from bulk and planar systems to 
some simple curved geometries [ 1-41. Usually, the 
director dynamics is analysed in terms of Frank theory 
of liquid crystalline elasticity and the concept of the 
so-called molecular field [ S ] .  In the case of confined 
systems, the elementary framework, first introduced by 
the Orsay group [6], must be extended to allow for the 
interaction between the liquid crystal and the sur- 
rounding material [ 71. 

However, this is usually not enough for the description 
of the director dynamics in restricted geometries. Due 
to purely topologxal reasons, equilibrium director con- 
figurations in confined systems are frequently character- 
ized by the presence of disclination lines and point 
defects. The cores of these objects are often described as 
regions of isotropic liquid, which are energetically more 
favourable than the highly distorted nematic liquid 
crystal even well below the clearing temperature [ 8,9]. 
From this simple point of view, the nematic liquid crystal 
is not bound only by the surrounding material, but also 
by the cores of the disclination lines or point defects, 
whichever occur in a given system. This is actually the 
basic assumption of the most frequently used model of 
the interaction between nematic director and disclination 
line. In this model, the disclination line is represented 
by a homogeneous cylindrical isotropic core [4, 10, 111. 
The static and dynamic properties of the nematic- 
disclination line interface are characterized by core 
radius, anchoring at the surface of the core, and the 

*Author for correspondence. 

corresponding interfacial rotational viscosity (which is 
throughout the paper referred to as surjiuce oiscosity). 

The main advantages of this model are simplicity and 
tractability. On the other hand, it suffers from two severe 
disadvantages. One of these is the assumption that the 
core is homogeneous. This implies a somewhat unphys- 
ical discontinuity of the nematic order parameter S =  
4(3 cos28 - 1) (where 8 is the angle between the long 
axis of the molecule and the director) at the nematic- 
disclination line interface. The second questionable point 
about this model is the determination of physically 
relevant values of the parameters that describe the 
surface of the core. While the radius of the core of the 
disclination line can be determined by Landau- 
de Gennes theory [9] and the anchoring strength at the 
surface of the core has been roughly estimated by an 
analysis of stability of the planar radial structure [4], it 
is rather difficult to say anything decisive about the 
surface viscosity at a nematic-disclination line interface. 
(The first measurement of surface viscosity, for MBBA 
on treated glass, has been reported only recently [ 121.) 
On the contrary, the structure of the core of the disclin- 
ation lines and point defects is consistently described 
within Landau-de Gennes theory, which predicts a 
continuous liquid crystalline ordering [ 13-17]. 

Obviously, a description of the director fluctuations 
in the vicinity of disclination lines and point defects, 
based on the continuous nematic order parameter profile 
in these regions, should work better than the hypothet- 
ical interface approach. In this paper, such a model- 
free of nematic-core interface and the corresponding 
elusive parameters (anchoring strength and surface vis- 
cos i ty t i s  introduced. The theoretical framework of the 
proposed approach is described in 9 2, and in 0 3 its use 
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is illustrated by an analysis of the eigenmodes order 
director fluctuations in the vicinity of a disclination line 
of strength 1 and the stability of the planar radial 
structure in a cylindrical cavity is discussed. 4 4 summar- 
izes the advantages of the model and concludes the 
paper. 

2. The model 
The complete treatment of the fluctuating orienta- 

tional order in nematic liquid crystals should start with 
a tensor order parameter and velocity fields [18]. 
However, such an analysis would be far too involved. If 
only fluctuations of the average orientation of the molec- 
ules (order director fluctuations) are to be studied, the 
problem is usually simplified by adopting the director 
description of the liquid crystal 1161, which is assumed 
to be uniaxial, and by adiabatic elimination of the 
velocity field. The assumption that the nematic ordering 
is uniaxial is, of course, an approximation, particularly 
questionable close to surfaces and defects. For example, 
the structure of the disclination line of strength 1 consists 
of a uniaxial core with negative nematic order parameter, 
surrounded by a radially symmetric region where the 
ordering is biaxial; at large distances from the core the 
alignment is, of course, uniaxial with positive order 
parameter 115, 191. (These details could be taken into 
account by introducing the elastic free energy of biaxial 
nematic ordering [ZO, 211, but such an approach would 
be quite involved.) In addition, the role of the hydrodyn- 
amic degree of freedom in the dynamics of the director 
fluctuations in confined systems is generally rather com- 
plicated (e.g. they can give rise to surface modes) and, 
in many cases, cannot be taken into account just by 
rescaling the rotational viscosity as in bulk samples 
[22, 231. Nevertheless, the following analysis is based 
on the above simplifications, because it is concentrated 
on the director dynamics in the vicinity of the disclin- 
ation line where the fluctuations are most likely to be 
predominantly characterized by the decreased degree of 
order, whereas the effects of the biaxiality of the equilib- 
rium structure and the coupling to the velocity field are 
expected to be less important. 

Within these approximations, the rate of change of 
the director is proportional to the molecular field 

nhere 1' is the effective bulk rotational viscosity (or 
shortly bulk viscosity), n = n(r, t )  is the director field and 

b = h(r. t )  = h(r. t )  - [h(r, t )  - n(r, t ) ]  n(r, t )  with 

is the molecular field [ 51; the subtracted part ensures 
the orthogonality of h and n [l]. If the two diver- 
gence elastic terms K,,V - [n(V - n)] and Kz4V - 
[n x V x n + n(V n)] are neglected, the free energy 
density f consists of splay, twist, and bend terms 

1 
S = ~ [ K ~ , ( V * n ) 2 + K 2 z ( n * V x n ) 2 + K 3 , ( n  x Vxn)' ]  

(3 )  

In the case of a spatially uniform nematic order para- 
meter, the elastic constants K,,,  K22.  and K , ,  arc also 
homogeneous and h is given by 

h = K,,V(V.n)  ~ K,,[AV x n + V x (An)] 

+K,,[B x V x n + V  x (n x B)]; ( 4 )  

where A = n . V  x n and B = n x V x n [ 5 ] .  
The proposed model is concerned with order director 

fluctuations-dynamical distortions of the director field, 
which are small in amplitude. Its key assumption is that 
the equilibrium nematic order parameter profile of a 
nematic structure does not change significantly upon a 
fluctuation of the director and is thus a well-defined 
quantity. This premise is based on the facts that ( i )  the 
nematic order parameter is defined on a scale which is 
sinall compared to most of the wavelengths of the 
director fluctuations and (ii) the relaxation times of 
director fluctuations are much longer than the relaxation 
times of nematic order parameter fluctuations, the 
difference being related to the Goldstone dispersion of 
the former 161. 

The nematic order parameter, S,  enters the dynamical 
equation (1) through both bulk viscosity and elastic 
constants: 1' 'x S' and K i i  cc S2 to lowest order [24-271. 
(However, the expansions of the elastic constants K,, 
and K, , ,  which are not taken into account at prcsent, 
also contain terms linear in S [28].) As far as 1' is 
concerned, it is only necessary to insert its spatial 
dependence in cquation ( 1 ) .  On the other hand, non- 
uniform elastic constants give rise to three more terms 
that. in addition to those defined by equation (4), 
contribute to the molecular field. The molecular field, 
induced by an inhomogeneous nematic order parameter, 
turns out to be given by 

h * = ( V K i i ) @ . n ) - ( V K , 2 )  x (An)+(VK, , )  x ( n  x B ) ,  
( 5 )  

with A and B as defined above. 
In order to analyse the director fluctuations in 

inhomogeneously ordered nematic liquid crystals within 
the model presented, the equilibrium order parameter 
field must be known. It can be determined by using a 
Landau-de Gennes free energy density expansion, which 
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is in its simplest uniaxial form usually expressed as 

1 1 1 1 
f = 5 a( T - T*)S2 - ~ BS3 + - CS4 + 2 L(V S)’, ( 6 )  

3 4 

where a, T*, B, C, and L are temperature-independent 
material constants [ 51. In most cases, the minimization 
of the free energy requires numerical treatment. 

3. Director modes in vicinity of a disclination line 
To demonstrate the use of the proposed approach, 

the behaviour of order director fluctuations in the vicin- 
ity of a disclination line of strength 1 is studied. A 
disclination line of this type occurs, for example, in the 
centre of the planar radial director field in cylindrical 
capillaries with homeotropic anchoring at the wall [9]. 
In cylindrical coordinates, this structure is described by 
no = e,, where e, is the radial unit vector. Its equilibrium 
nematic order parameter profile has been studied 
within the uniaxial approximation [16]. Close to the 
centre of the disclination, the nematic order parameter 
turns out to be proportional to the distance from the 
centre (r) ,  while at larger distances it saturates at a 
temperature-dependent bulk value. This behaviour can 
be approximated rather well by the model profile 

S(r)=So[l -exp(-rib)], (7) 

where So is the bulk nematic order parameter and b is 
a parameter, related to the size of the defect. The 
temperature dependence of b can be estimated by minim- 
izing the free energy of the model planar radial structure 
(whose nematic order parameter profile is described by 
equation (7)) with respect to b. For large capillaries, the 
temperature dependence of b is approximately given 
by 0.83 [L/a(T, - T*)]’/’ - It - 9/8 where T, = 

T* + 2B2/9uC is the critical temperature and t = 

(T  - T*)/( T,  - T*) is the reduced temperature; in this 
scale, t = 9/8 corresponds to the superheating temper- 
ature. Within the isotropic core model, the core radius 
( ro )  is given by the nematic correlation length, which is 
inversely proportional to (T, - T)lI2 [9]; obviously, ro is 
quite close to b. 

The eigenmode analysis is carried out within the one 
elastic constant approximation, i.e. K,, = K,, = K,, = 

K.  Up to linear terms, the fluctuating &rector field is 
given by n(r, t )  = no + P(r, t)e,  + d ( r ,  t)e, (the cylindrical 
coordinate system being spanned by e,, e,, and ez), where 
both planar and axial components are assumed to be 
small (IY(r,t)I, I d ( r , t ) (  << 1). According to the introduct- 
ory paragraphs, the dynamics of the fluctuating compon- 
ents of the director field are given by 

a d  
Y ~ at = K ( V 2 d  + 5) + (5 - $), (9) 

where y = yoq(r), . K = Koq(r), and q(r) = 

[ 1 - exp(-r/b)]’. yo and KO are the values of bulk 
viscosity and elastic constant for S = So, i.e. far from the 
disclination line. 

The planar eigenmodes are of the form 

(10) 
where m is an integer and k, is an integer multiple of 
2 4 d :  to ensure the completeness of the eigenmodes, 
periodic boundary conditions along the capillary of 
length d are assumed. Both the radial part of the planar 
eigenmode, Rp(r) ,  and its relaxation time, zP ,  depend on 
m and k, .  The axial eigenmodes are decomposed in 
precisely the same manner. The radial parts of the planar 
and axial eigenmodes, respectively, are determined by 

( 12) 
where prime denotes d/dx with x 3 r/R ( R  is the radius 
of the capillary), 

and q = [ 1 - exp (-x/P)]’ with f l =  b/R. For simplicity, 
strong anchoring at the wall of the capillary ( x  = 1) is 
assumed (Rp( 1) = RA( 1) = 0) .  The boundary condition 
at x = 0 (the axis of the cylinder) requires that the 
eigenmodes be finite, i.e. Rp(0),  RA(0)  < co. To examine 
the behaviour of planar and axial eigenmodes in the 
core of the disclination line, approximate forms of equa- 
tions ( l l ) and ( 12) valid for x << l must be found. Near 
x =0, which is a regular singular point for both 
equations, 

3 m2 

X x2 
R; + - R; - - Rp = 0, 

3 m2+ 1 
X X2 

R2 + - RL - - RA=O 
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R,(x + 0) - 1 +(z  +m2J' ' parameter b (which, as noted above, is nearly equal to 
the nematic correlation length). The question is whether 
the effective radius of the line (the quantity that corre- 
sponds to the radius of the line in the isotropic core 
model) is exactly equal to b or is it perhaps two or three 
times larger? In order to establish the relation between 
the two quantities, the stability of the planar radial 
structure against the escape along thc capillary axis is 
analysed [4, 111. The former is unstable if the relaxation 
rate of the slowest axial eigenmode is negative. 

The slowest axial eigenmode is the one with t n =  
k, = O  and no radial nodes. In a more elaborate 
model with anisotropic liquid crystalline elasticity 
(Kll  # K,, # K,,), its radial part, RA,o.  is determined by 

( I7)  
With the aid of these results, equations ( 1  1) and (12) 
can bc integrated numerically. Some of the radial parts 
of planar and axial eigenmodes, corresponding to p = 

b,/R = 0.05, are shown in figures 1 and 2, respectively. 
Within the above description of the disclination line, 

its thickness is determined by the temperature-dependent 

-0.6 I 
0 0.2 0.4 0.6 0.8 1 

.x 

Figure 1. Some of the radial parts of planar eigenmodes in a 
nematic capillary with p = 0-05 and K , ,  = K 2 ,  = K 3 3 .  For 
ni = 0, the planar modes remain finite right down to the 
centre of the disclination line; these modes correspond to 
a spiral distortion of the planar radial structure. For 
i n  > 0, the modes must vanish at x = 0. Each radial part 
is labelled by (m, A p ) ;  the nematic order parameter profile 
(q = S/S,) is also plotted (dashed line). 

1 

0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

R.4 

-0 h 
0 0.2 0.4 0.6 0.8 I 

x 
Figure 2. Radial parts of the lowest axial eigenmodes in the 

capillary, tagged by in and L A ;  as in figure 1, /J' = 0.05 and 
K ,  = K,, = K,, . All axial eigenmodes vanish in the centre 
of the disclination line. Note that the relaxation rate ol 
the lowest axial eigenmode is negative, which indicates 
that the planar radial structure is unstable at /3 = 0.05 and 
K,, = K 3 3 .  Again, the nematic order parameter profile is 
plotted with the dashed line. 

(18) 

(where u3 = K33,/K11) and the boundary conditions 
R,,o(0) < 'x and RA,,J 1)  = 0. Close to the centre of the 
disclination line, 

(19) 

The phase diagram is therefore defined in space spanned 
by p, which depends on the temperature, and ci,, the 
ratio of bend and splay elastic constant. 

In figure 3, the phase diagram resulting from the 
above stability analysis is compared with predictions of 
previous calculations, based on the isotropic core model 
with no anchoring of the nematic director at the disclin- 
ation line (i.e. the corresponding anchoring strength is 
set to 0) [4]t. and with the phase diagram obtained by 
comparison of the free energies of the planar radial 
structure with a homogeneous isotropic core of the 
disclination line and the escaped configuration. 
Qualitatively, all three phase diagrams are the same: the 
escaped radial structure is stable at small values of 
the reduced bend elastic constant, u3> and at large a, 
the planar configuration should be observed. The critical 
value of a, decreases with increasing p and p = ro/R, 
where ro is the radius of the disclination line in the 
isotropic core model. Quantitative discrepancies of the 
phase diagrams are related to the differences among 
the models of the nematic order parameter profiles of 
the planar radial structure on the one hand and the 
order parameter profile of the escaped radial configura- 
tion on the other [4]. 

According to figure 3, the sole parameter of the 
described model of the nematic order parameter profile, 
h, can be regarded as the effective radius of the disclin- 
ation line. Once this correspondence is established, one 

-l+(l+a3-')':2 R,,,(x + 0) z x 

t T h e  phase diagram, of course, does not depend on the 
value of the surface viscosity [ 111. 
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P 
0.0 1 0.05 0.1 0.15 0.2 
5 

4 

3 

2 

1 

0 

a3 

planar radial structure 

- -  - -  
- . _  escaped radial structure 

0.0 1 0.05 0.1 0.15 0.2 
P 

Figure 3. The phase diagram, calculated by eigenmode ana- 
lyses, based on the proposed description of the disclination 
line (solid line) and the isotropic core model with core 
radius ro and no anchoring at the surface of the line 
(dashed line) [ 111, respectively, and by comparison of the 
free energies of an escaped and a planar radial structure 
with a homogeneous disclination line with radius ro 
(dotted line). (The first one is defined in (b,  a,)-space and 
the other two in a plane spanned by p=ro/R and a3.) 
The approaches give quite similar results: for small values 
of a3, the escaped configuration is expected, while the 
planar structure should be stable at large a3. The only 
parameter of the proposed model, h, obviously coincides 
with the common notion of the radius of the disclination 
line, ro.  

can estimate the surface viscosity needed for the descrip- 
tion of the nematic-disclination line interaction within 
the isotropic core model. This can be accomplished by 
comparing the shape of the eigenmodes, predicted by 
the two models. It turns out that the modes, calculated 
by the isotropic core model [4], are closest to their 
counterparts from figures 1 and 2 if the surface viscosity 
is set to 0. This is illustrated by figure 4, where some of 
the lowest axial modes, determined by the isotropic core 
model with zero anchoring strength and zero surface 
viscosity, are compared with the modes from figure 2.  
The difference between the corresponding modes 
becomes negligible as in increases and is really significant 
only for m = 0 and 1. For planar modes, the discrepancy 
between the predictions of the two models is 
more pronounced than for axial ones, but, again, it is 
important only for in < 2. 

The above discussion complements the estimate of the 
value of the anchoring strength, based on a stability 
analysis [4]. The results of both analyses suggest that 
if the disclination line is described by a homogeneous 
cylinder of isotropic phase, anchoring strength and 

R.4 
0.8 

0.6 

0.4 

0.2 

0 

-0.2 

-0.4 

-0.6 
0 0.2 0.4 0.6 0.8 1 

X 

Figure 4. Some of the lowest axial eigenmodes, calculated 
within the isotropic core model with zero anchoring 
strength and zero surface viscosity at the nematic-disclin- 
ation interface (thin line), and their counterparts from 
figure 2 (thick line). Each pair of eigenmodes is labelled 
by (m, , lA; , lAi) ,  where L A  and LAi are the relaxation rates 
of the eigenmodes corresponding to the proposed descrip- 
tion of the disclination line and the isotropic core model, 
respectively. The difference between the predictions of 
both models is largest for m=0; and rn > 2 ,  they are 
practically indistinguishable. 

surface viscosity at the nematic-disclination line interface 
should be set to 0. 

4. Conclusions 
Within the proposed approach, spatially dependent 

bulk viscosity and elastic constants are introduced in 
Frank elastic theory of order director fluctuations in 
nematic liquid crystals. The model is tested by analysing 
the eigenmodes of fluctuations in a planar radial struc- 
ture, characterized by a disclination line of strength 1. 
It seems to offer a sounder and more transparent descrip- 
tion of the director dynamics in the vicinity of a disclin- 
ation line than the isotropic core approach. Its important 
advantage over the models used so far is the reduced 
number of parameters needed for the description of the 
coupling of the nematic director and the disclination 
line. Within the presented model, this interaction is 
described only by the coefficients of the Landau- 
de Gennes expansion (which determine the radius of the 
core), whereas in the isotropic core model, the anchoring 
strength and the surface viscosity at the nematic-core 
interface are needed on top of these material constants. 

In micron- and supramicron-size confined systems, 
the disclination lines and point defects constitute only a 
minute part of the volume. In such cases, the main role 
of the concept of inhomogeneous bulk viscosity and 
elastic constants is to provide boundary conditions for 
the fluctuating director field at the singularities. But the 
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underlying theory should apply to all nematic systems 
with inhomogeneous equilibrium order parameter pro- 
file, provided the temperature is far enough from critical. 
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